Sequence-to-sequence modeling for graph representation learning
نویسندگان
چکیده
منابع مشابه
Sequence to Sequence Autoencoders for Unsupervised Representation Learning from Audio
This paper describes our contribution to the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE 2017). We propose a system for this task using a recurrent sequence to sequence autoencoder for unsupervised representation learning from raw audio files. First, we extract mel-spectrograms from the raw audio files. Secon...
متن کاملSequence to Sequence Learning for Event Prediction
This paper presents an approach to the task of predicting an event description from a preceding sentence in a text. Our approach explores sequence-to-sequence learning using a bidirectional multi-layer recurrent neural network. Our approach substantially outperforms previous work in terms of the BLEU score on two datasets derived from WIKIHOW and DESCRIPT respectively. Since the BLEU score is n...
متن کاملUnsupervised Pretraining for Sequence to Sequence Learning
This work presents a general unsupervised learning method to improve the accuracy of sequence to sequence (seq2seq) models. In our method, the weights of the encoder and decoder of a seq2seq model are initialized with the pretrained weights of two language models and then fine-tuned with labeled data. We apply this method to challenging benchmarks in machine translation and abstractive summariz...
متن کاملConvolutional Sequence to Sequence Learning
A. Weight Initialization We derive a weight initialization scheme tailored to the GLU activation function similar to Glorot & Bengio (2010); He et al. (2015b) by focusing on the variance of activations within the network for both forward and backward passes. We also detail how we modify the weight initialization for dropout. A.1. Forward Pass Assuming that the inputs x l of a convolutional laye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Network Science
سال: 2019
ISSN: 2364-8228
DOI: 10.1007/s41109-019-0174-8